The hydroosmotic response of frog urinary bladder to serosal hypertonicity is dependent on adenylate cyclase for its maintenance and affected by [Cl−]ochanges

Author:

Hanna-Mitchell Ann T.,Gebruers Elizabeth M.

Abstract

The role of adenylate cyclase (AC) in the maintenance of the hydroosmotic response to serosal hypertonicity (SH) in anuran urinary bladder is disputed. In this study, norepinephrine (NE) significantly reversed the hydroosmotic response of Rana temporaria bladders in hypertonic medium (330 mosmol/kgH2O). The reversal was inhibited by yohimbine but was unaffected by prazosin and propranolol, indicating that NE action was mediated via α2-adrenergic receptors. Preincubation of bladders with indomethacin did not interfere with the inhibitory action of NE, contraindicating a role for prostaglandins. The SH hydroosmotic response was abolished in the presence of 5- n-ethyl- N-isopropyl amiloride (EIPA), but the antidiuretic hormone (ADH) hydroosmotic response was not. EIPA inhibits Na+/H+, known to be activated by cell shrinkage. An investigation of the anionic requirement of the SH hydroosmotic response revealed that replacement of bath Clwith the nonpermeable anion gluconate reversibly abolished this response. In contrast, the hydroosmotic response to ADH was unaffected by Clremoval; however, when Clwas absent, it was no longer augmented in hypertonic bath. The SH response was inhibited by the Clchannel blocker 5-nitro-2-(3-phenylpropylamino)benzoate but not by the Na/K/2Cl inhibitor bumetanide. Our results show that not only the onset but also the maintenance of the SH hydroosmotic response is dependent on AC activity and does not differ in this respect to the ADH hydroosmotic response. The effect of modifying extracellular Clconcentration, suggests that this anion, possibly functionally linked with Na+/H+activity, may be involved in invoking the SH hydroosmotic response in anuran urinary bladder.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gene expression and localization of two types of AQP5 inXenopus tropicalisunder hydration and dehydration;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2014-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3