Angiotensin-(1-7) serves as an aquaretic by increasing water intake and diuresis in association with downregulation of aquaporin-1 during pregnancy in rats

Author:

Joyner J.,Neves L. A. A.,Stovall K.,Ferrario C. M.,Brosnihan K. B.

Abstract

We previously demonstrated that kidney and urine levels of angiotensin-(1-7) [ANG-(1-7)] were increased in pregnancy. To explore the role of ANG-(1-7) on fluid and electrolyte homeostasis during pregnancy, we evaluated the effect of the ANG-(1-7) antagonist d-alanine-[ANG-(1-7)] (A-779) on kidney function. Virgin and pregnant rats received infusion of vehicle or A-779 (48 μg·kg−1·h−1) for 8 days by osmotic minipumps. Metabolic studies were done on treatment day 7–8. Virgin and pregnant rats at day 15 and 19 were killed, and blood and kidneys were collected. Kidneys were prepared for Western blot analysis for aquaporin-1 (AQP1) and aquaporin-2. In virgin female rats, A-779 increased urine volume and decreased urinary osmolality and AQP1 with no change in water intake. In 19-day pregnant rats, A-779 significantly decreased water intake and urine volume and increased urinary osmolality and kidney AQP1 expression. Only in late gestation did A-779 treatment decrease the difference between intake and output (balance). A-779 treatment increased plasma vasopressin in late gestation but did not change vasopressin in virgins. In virgin and pregnant animals, A-779 administration had no effect on blood pressure, plasma volume, blood volume, or urinary electrolytes. These results suggest that ANG-(1-7) produces antidiuresis associated with upregulation of AQP1 in virgin rats, whereas ANG-(1-7) produces diuresis in late gestation with downregulation of AQP1. ANG-(1-7) contributes to the enhanced water intake during pregnancy, allowing maintenance of the normal volume-expanded state despite diuresis produced in part by decreased AVP and AQP1.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3