Affiliation:
1. Center for Perinatal Biology, Departments of Physiology/Pharmacology and Obstetrics and Gynecology, School of Medicine, Loma Linda University, Loma Linda, California 92350
Abstract
Recently, we reported that, whereas in cerebral arteries of the adult a majority of norepinephrine (NE)-induced increase in intracellular Ca2+ concentration ([Ca2+]i) comes from release of the sarcoplasmic reticulum (SR) Ca2+ stores, in the fetus the SR Ca2+ stores are relatively small, and NE-induced increase in [Ca2+]i results mainly from activation of plasma membrane L-type Ca2+ channels (20). In an effort to establish further the role of L-type Ca2+ channels in the developing cerebral arteries, we tested the hypothesis that, in the fetus, increased reliance on plasmalemmal L-type Ca2+ channels is mediated, in part, by increased L-type Ca2+ channel density. We used3H-labeled (+)isopropyl-4-(2,1,3-benzoxadiazol-4-y1)-1,4-dihydro-(2,6-dimethyl-5-methoxycarbonyl)pyridine-3-carboxylate (PN200–110, isradipine) to measure L-type Ca2+ channel density (Bmax) in the cerebral arteries, common carotid artery (CCA), and descending aortae of fetal (∼140 gestation days), newborn (7–10 days), and adult sheep. In the cerebral and common carotid arteries, Bmax values (fmol/mg protein) of fetuses and newborns were significantly greater than those of adults. Western immunoblotting assay also revealed that the density of L-type Ca2+ channel protein in the cerebral arteries and CCA was about twofold greater in the fetus than the adult. Finally, compared with the adult, fetal cerebral arteries demonstrated a significantly greater maximum tension and [Ca2+]i in response to stimulation with the L-type Ca2+ channel agonist Bay K 8644. In addition, Bay K 8644-stimulated fetal vessels demonstrated a maximal tension and [Ca2+]isimilar to that observed in response to stimulation with 10−4 NE. These results support the idea that fetal cerebrovascular smooth muscle relies more on extracellular Ca2+ and L-type Ca2+ channels for contraction than does the adult and that this increased reliance is mediated, in part, by greater L-type Ca2+ channel density. This may have important implications in the regulation of cerebral blood flow in the developing organism.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献