Afferent signaling drives oxytocinergic preautonomic neurons and mediates training-induced plasticity

Author:

Cavalleri Marina T.1,Burgi Katia1,Cruz Josiane C.1,Jordão Maria T.1,Ceroni Alexandre1,Michelini Lisete C.1

Affiliation:

1. Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil

Abstract

We showed previously that oxytocinergic (OTergic) projections from the hypothalamic paraventricular nucleus (PVN) to the dorsal brain stem mediate training-induced heart rate (HR) adjustments and that beneficial effects of training are blocked by sinoaortic denervation (SAD; Exp Physiol 94: 630–640; 1103–1113, 2009). We sought now to determine the combined effect of training and SAD on PVN OTergic neurons in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats. Rats underwent SAD or sham surgery and were trained (55% of maximal capacity) or kept sedentary for 3 mo. After hemodynamic measurements were taken at rest, rats were deeply anesthetized. Fresh brains were frozen and sliced to isolate the PVN; samples were processed for OT expression (real-time PCR) and fixed brains were processed for OT immunofluorescence. In sham rats, training improved treadmill performance and increased the gain of baroreflex control of HR. Training reduced resting HR (−8%) in both groups, with a fall in blood pressure (−10%) only in SHR rats. These changes were accompanied by marked increases in PVN OT mRNA expression (3.9- and 2.2-fold in WKY and SHR rats, respectively) and peptide density in PVN OTergic neurons (2.6-fold in both groups), with significant correlations between OT content and training-induced resting bradycardia. SAD abolished PVN OT mRNA expression and markedly reduced PVN OT density in WKY and SHR. Training had no effect on HR, PVN OT mRNA, or OT content following SAD. The chronic absence of inputs from baroreceptors and chemoreceptors uncovers the pivotal role of afferent signaling in driving both the plasticity and activity of PVN OTergic neurons, as well as the beneficial effects of training on cardiovascular control.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3