48-h Hypoxic exposure results in endothelium-dependent systemic vascular smooth muscle cell hyperpolarization

Author:

Earley Scott1,Naik Jay S.1,Walker Benjimen R.1

Affiliation:

1. Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131-5218

Abstract

Chronic hypoxia (CH) results in reduced sensitivity to vasoconstrictors in conscious rats that persists upon restoration of normoxia. We hypothesized that this effect is due to endothelium-dependent hyperpolarization of vascular smooth muscle (VSM) cells after CH. VSM cell resting membrane potential was determined for superior mesenteric artery strips isolated from CH rats (Pb = 380 Torr for 48 h) and normoxic controls. VSM cells from CH rats studied under normoxia were hyperpolarized compared with controls. Resting vessel wall intracellular Ca2+ concentration ([Ca2+]i) and pressure-induced vasoconstriction were reduced in vessels isolated from CH rats compared with controls. Vasoconstriction and increases in vessel wall [Ca2+]i in response to the α1-adrenergic agonist phenylephrine (PE) were also blunted in resistance arteries from CH rats. Removal of the endothelium normalized resting membrane potential, resting vessel wall [Ca2+]i, pressure-induced vasoconstrictor responses, and PE-induced constrictor and Ca2+ responses between groups. Whereas VSM cell hyperpolarization persisted in the presence of nitric oxide synthase inhibition, heme oxygenase inhibition restored VSM cell resting membrane potential in vessels from CH rats to control levels. We conclude that endothelial derived CO accounts for persistent VSM cell hyperpolarization and vasoconstrictor hyporeactivity after CH.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3