Affiliation:
1. Department of Animal Physiology, Faculty of Science, University of Nijmegen, 6525 ED Nijmegen, The Netherlands; and Center for Marine Research, Institute Rudjer Boskovic, 52210 Rovinj, Croatia
Abstract
Na+-K+-ATPase and Na+/Ca2+exchange activities were studied in gills of Carcinus maenas in seawater (SW) and after transfer to dilute seawater (DSW). Carcinushyperregulates its hemolymph osmolarity through active uptake of Na+, Cl−, and Ca2+. In DSW total Na+-K+-ATPase activity in posterior gills quadrupled; Na+/Ca2+exchange specific activity was unaffected, and total activity increased 1.67-fold. Short-circuit current ( Isc) in voltage-clamped posterior gill hemilamellae was −181 μA/cm2in SW and −290 μA/cm2in DSW and up to 90% ouabain sensitive; conductivity was similar in SW or DSW (42 and 46 mS/cm2, respectively) and representative of a leaky epithelium. The new steady state of hemolymph osmolarity 24 h after DSW transfer was preceded, already 3 h after transfer, by increased Na+-K+-ATPase but not Na+/Ca2+exchange activity. Western blot analysis indicated that the amount of Na+-K+-ATPase protein had increased 2.1-fold in crabs acclimated 3 wk to DSW; however, 4 h after DSW transfer no difference in the amount of Na+-K+-ATPase protein was observed. After DSW transfer branchial cAMP content decreased. A negative correlation between branchial Na+-K+-ATPase activity and cAMP content points to rapid regulation of Na+-K+-ATPase through cAMP-dependent protein kinase A activity. Ca2+transport may depend on the high-capacity Na+/Ca2+exchanger coupled to the versatile sodium pump.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
99 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献