Role of skeletal muscle in plasma ion and acid-base regulation after NaHCO3 and KHCO3 loading in humans

Author:

Lindinger Michael I.1,Franklin Thomas W.1,Lands Larry C.2,Pedersen Preben K.3,Welsh Donald G.1,Heigenhauser George J. F.2

Affiliation:

1. Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1;

2. Department of Medicine, McMaster University, Hamilton, Ontario, Canada L8N 3Z5; and

3. Department of Sports Science and Physical Education, University of Odense, DK-5230 Odense, Denmark

Abstract

This paper examines the time course of changes in plasma electrolyte and acid-base composition in response to NaHCO3 and KHCO3 ingestion. It was hypothesized that skeletal muscle is involved in the correction of the ensuing plasma disturbance by exchanging ions, gasses, and fluids between cells and extracellular fluids. Five male subjects, with catheters in a brachial artery and antecubital vein, ingested 3.57 mmol/kg body mass NaHCO3 or KHCO3. While seated, blood samples were taken 30 min before ingestion of the solution, at 10-min intervals during the 60-min ingestion period, and periodically for 210 min after ingestion was complete. Blood was analyzed for gases, hematocrit, plasma ions, and total protein. With NaHCO3, arterial plasma Na+ concentration ([Na+]) increased from 143 ± 1 to 147 ± 1 (SE) meq/l, H+ concentration ([H+]) decreased by 6 ± 1 neq/l, and [Formula: see text] increased by 5 ± 1 mmHg. There was no detectable net Na+ uptake by tissues. An increased plasma strong ion difference ([SID]) accounted fully for the decrease in plasma [H+]. With KHCO3, K+ concentration increased from 4.25 ± 0.10 to 7.17 ± 0.13 meq/l, plasma volume decreased by 15.5 ± 2.3%, [H+] decreased by 4 ± 1 neq/l, and there was no change in[Formula: see text]. The decrease in [H+] in the KHCO3 trial primarily arose in response to the increased [SID]. Net K+ uptake by tissues accounted for 37 ± 5% of the ingested K+. In conclusion, ingestion of NaHCO3and KHCO3 produced markedly different fluid and ionic disturbances and associated regulatory responses by skeletal muscle. Accordingly, the physicochemical origins of the acid-base disturbances also differed between treatments. The tissues did not play a role in regulating plasma [Na+] after ingestion of NaHCO3. In contrast, the net influx of K+ to tissues played an important role in removing K+ from the extracellular compartment after ingestion of KHCO3.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3