Phenotypic variation in sensorimotor performance among eleven inbred rat strains

Author:

Biesiadecki Brandon J.1,Brand Paul H.1,Koch Lauren G.1,Metting Patricia J.1,Britton Steven L.1

Affiliation:

1. Department of Physiology and Molecular Medicine, Medical College of Ohio, Toledo, Ohio 43614

Abstract

As a first step toward identifying the genes that determine sensorimotor ability (motor coordination) we subjected 11 inbred strains of rats to three different tests for this trait. Rats were tested at 13 wk of age to determine how long they could remain on 1) a rotating cylinder as the velocity of rotation increased every 5 s (1-direction rotation test), 2) a rotating cylinder that reversed direction every 5 s and increased velocity every 10 s (2-direction rotation test), and 3) a platform that was tilted 2° every 5 s from 22 to 47° (tilt test). On all three tests, rats of the PVG strain demonstrated the greatest sensorimotor ability. In contrast, rats of the MNS strain were most often represented among the group of strains that demonstrated the lowest performance on all tests. Considering all three tests, there was a 3- to 13-fold range in sensorimotor performance between the highest and lowest strains. This large divergence between the highest and lowest strains provides a genetic model that can be used to identify intermediate phenotypes and quantitative trait loci that contribute to sensorimotor ability.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3