Affiliation:
1. Departments of Medicine,
2. West Side Department of Veterans Affairs Medical Center, Chicago, Illinois 60612
3. Pharmaceutics and Pharmacodynamics, and
4. Bioengineering, University of Illinois at Chicago, and
Abstract
The purpose of this study was to determine whether exogenous calmodulin potentiates vasoactive intestinal peptide (VIP)-induced vasodilation in vivo and, if so, whether this response is amplified by association of VIP with sterically stabilized liposomes. Using intravital microscopy, we found that calmodulin suffused together with aqueous and liposomal VIP did not potentiate vasodilation elicited by VIP in the in situ hamster cheek pouch. However, preincubation of calmodulin with liposomal, but not aqueous, VIP for 1 and 2 h and overnight at 4°C before suffusion significantly potentiated vasodilation ( P < 0.05). Calmodulin-induced responses were significantly attenuated by calmidazolium, trifluoperazine, and N G-nitro-l-arginine methyl ester (l-NAME) but notd-NAME. The effects ofl-NAME were reversed byl- but notd-arginine. Indomethacin had no significant effects on calmodulin-induced responses. Calmodulin had no significant effects on adenosine-, isoproterenol-, acetylcholine-, and calcium ionophore A-23187-induced vasodilation. Collectively, these data indicate that exogenous calmodulin amplifies vasodilation elicited by phospholipid-associated, but not aqueous, VIP in the in situ peripheral microcirculation in a specific, calmodulin active sites-, and nitric oxide-dependent fashion. We suggest that extracellular calmodulin, phospholipids, and VIP form a novel functionally coordinated class of endogenous vasodilators.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献