Affiliation:
1. Department of Internal Medicine and Cardiovascular Center, University of Iowa College of Medicine and Medical Service, Department of Veterans Affairs Medical Center, Iowa City, Iowa 52242
Abstract
Anatomical studies have demonstrated that the lateral parabrachial nucleus (LPBN) is composed of at least seven separate subnuclei distinguished by cell morphology, spatial clustering, and afferent and efferent connectivity. We hypothesized that neurons within the subnuclear clusters of the LPBN might have distinct electrophysiological properties that correlate with cellular morphology. An in vitro slice preparation was used to intracellularly record the intrinsic properties of 64 neurons located within the external lateral (EL) and central lateral (CL) subnuclei of the LPBN in adult rats. Analysis of intrinsic properties revealed that neurons in the EL subnucleus had significantly wider action potentials and on the average demonstrated more spike frequency adaptation during 2 s of depolarization compared with CL neurons. The majority of both EL and CL area neurons expressed delayed excitation (DE) after membrane hyperpolarization. DE was eliminated with the A-current blocker 4-aminopyridine (1.5–5 mM). Postinhibitory rebound was also observed in a subpopulation of EL and CL neurons. Morphological analysis of 11 LPBN neurons, which were electrophysiologically characterized and filled with 2% biocytin, failed to demonstrate an association between morphology and the electrophysiological profiles of LPBN neurons. The lack of distinct “type” of neuron within a single subnucleus of the LPBN is in agreement with recent findings reported from the neonatal rat.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献