A new paradigm of sodium regulation in inflammation and hypertension

Author:

Kirabo Annet12

Affiliation:

1. Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee

2. Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville Tennessee

Abstract

Dysregulation of sodium (Na+) balance is a major cause of hypertensive cardiovascular disease. The current dogma is that interstitial Na+ readily equilibrates with plasma and that renal excretion and reabsorption is sufficient to regulate extracellular fluid volume and control blood pressure. These ideas have been recently challenged by the discovery that Na+ accumulates in tissues without commensurate volume retention and activates immune cells, leading to hypertension and autoimmune disease. However, objections have been raised to this new paradigm, with some investigators concerned about where and how salt is stored in tissues. Further concerns also include how Na+ is mobilized from tissue stores and how it interacts with various organ systems to cause hypertension and end-organ damage. This review assesses these two paradigms of Na+ regulation in the context of inflammation-mediated hypertension and cardiovascular disease pathogenesis. Also highlighted are future perspectives and important gaps in our understanding of how Na+ is linked to inflammation and hypertension. Understanding mechanisms of salt and body fluid regulation is the sine qua non of research efforts to identify therapeutic targets for hypertension and cardiovascular disease.

Funder

NIH

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Features of arterial hypertension in obesity;Shidnoevropejskij zurnal vnutrisnoi ta simejnoi medicini;2023-12

2. Glycocalyx–Sodium Interaction in Vascular Endothelium;Nutrients;2023-06-25

3. Dietary modification for prevention and control of high blood pressure;Postgraduate Medical Journal;2023-06-07

4. Hypertensive heart disease: risk factors, complications and mechanisms;Frontiers in Cardiovascular Medicine;2023-06-05

5. The Interplay Between Dietary Sodium Intake and Proteinuria in CKD;Kidney International Reports;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3