Dorsal motor nucleus of the vagus: a site for evoking simultaneous changes in crural diaphragm activity, lower esophageal sphincter pressure, and fundus tone

Author:

Niedringhaus Mark,Jackson Patrick G.,Evans Stephen R. T.,Verbalis Joseph G.,Gillis Richard A.,Sahibzada Niaz

Abstract

The sphincter mechanism at the esophagogastric junction includes smooth muscle of the lower esophagus and skeletal muscle of the crural diaphragm (CD). Smooth muscle is known to be under the control of the dorsal motor nucleus of the vagus (DMV), while central nervous system (CNS) control of the CD is unknown. The main purposes of our study were to determine the CNS site that controls the CD and whether simultaneous changes in lower esophageal sphincter (LES) pressure and CD activity occur when this site is activated. Experiments were performed on anesthetized male ferrets whose LES pressure, CD activity, and fundus tone were monitored. To activate DMV neurons, l-glutamate was microinjected unilaterally into the DMV at three areas: intermediate, rostral, and caudal. Stimulation of the intermediate DMV decreased CD activity (−4.8 ± 0.1 bursts/min and −0.3 ± 0.01 mV) and LES pressure (−13.2 ± 2.0 mmHg; n = 9). Stimulation of this brain site also produced an increase in fundus tone. Stimulation of the rostral DMV elicited increases in the activity of all three target organs ( n = 5). Stimulation of the caudal DMV had no effect on the CD but did decrease both LES pressure and fundus tone ( n = 5). All changes in LES pressure, fundus tone, and some DMV-induced changes in CD activity (i.e., bursts/min) were prevented by ipsilateral vagotomy. Our data indicate that simultaneous changes in activity of esophagogastric sphincters and fundus tone occur from rostral and intermediate areas of the DMV and that these changes are largely mediated by efferent vagus nerves.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3