Zacopride and 8-OH-DPAT reverse opioid-induced respiratory depression and hypoxia but not catatonic immobilization in goats

Author:

Meyer Leith C. R.,Fuller Andrea,Mitchell Duncan

Abstract

Neurophysiological studies have shown that serotonergic ligands that bind to 5-HT1A, 5-HT7, and 5-HT4 serotonin receptors in brain stem have beneficial effects on respiratory neurons during opioid-induced respiratory depression. The effect of these ligands on respiratory function and pulmonary performance has not been studied. We therefore examined the effects of 8-hydroxy-2-(di- n-propylamino)tetralin (8-OH-DPAT), an agonist of 5-HT1A and 5-HT7 receptors, and zacopride, an agonist of 5-HT4 receptors, to establish whether these ligands would reverse opioid-induced respiratory depression and hypoxia without affecting the immobilizing properties of the opioid drug etorphine. When etorphine was used to sedate and immobilize goats, it significantly decreased respiratory rate ( P = 0.013), percent hemoglobin oxygen saturation ( P < 0.0001), and arterial oxygen partial pressure [PaO2; F(10,70) = 5.67, P < 0.05] and increased arterial carbon dioxide partial pressure [ F(10,70) = 3.87, P < 0.05] and alveolar-arterial oxygen partial pressure gradient [A-a gradients; F(10,70) = 8.23, P < 0.0001]. Zacopride and 8-OH-DPAT, coadministered with etorphine, both attenuated the effects of etorphine; respiration rates did not decrease, and percent hemoglobin oxygen saturation and PaO2 remained elevated. Zacopride decreased the hypercapnia, indicating an improvement in ventilation, whereas 8-OH-DPAT did not affect the hypercapnia and, therefore, did not improve ventilation. The main beneficial effect of 8-OH-DPAT was on the pulmonary circulation; it improved oxygen diffusion, indicated by the normal A-a gradients, presumably by improving ventilation perfusion ratios. Neither zacopride nor 8-OH-DPAT reversed etorphine-induced catatonic immobilization. We conclude that serotonergic drugs that act on 5-HT1A, 5-HT7, and 5-HT4 receptors reverse opioid-induced respiratory depression and hypoxia without reversing catatonic immobilization.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3