Glycerol-3-phosphatase and not lipid recycling is the primary pathway in the accumulation of high concentrations of glycerol in rainbow smelt (Osmerus mordax)

Author:

Ditlecadet Delphine1,Driedzic William R.1

Affiliation:

1. Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada

Abstract

Rainbow smelt is a small fish that accumulates glycerol in winter as a cryoprotectant when the animal is in seawater. Glycerol is synthesized in liver from different substrates that all lead to the formation of glycerol-3-phosphate (G3P). This study assesses whether glycerol is produced by a direct dephosphorylation of G3P by a phosphatase (G3Pase) or by a cycling through the glycerolipid pool followed by lipolysis. Foremost, concentrations of on-board glycerolipids and activity of G3Pase and of enzymes involved in lipid metabolism were measured in smelt liver over the glycerol cycle. Concentrations of on-board glycerolipids did not change over the cycle and were too low to significantly contribute directly to glycerol production but activities of enzymes involved in both potential pathways were up-regulated at the onset of glycerol accumulation. A second experiment conducted with isolated hepatic cells producing glycerol showed 1) that on-board glycerolipids were not sufficient to produce the glycerol released even though phospholipids could account for up to 17% of it, 2) that carbon cycling through the glycerolipid pool was not involved as glycerol was produced at similar rates following inhibition of this pathway, and 3) that G3Pase activity measured was sufficient to allow the synthesis of glycerol at the rate observed. These results are the first to clearly support G3Pase as the metabolic step leading to glycerol production in rainbow smelt and the first to provide strong support for a G3Pase in any animal species.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3