Author:
Cheon Yewon,Nara Takayuki Y.,Band Mark R.,Beever Jonathan E.,Wallig Matthew A.,Nakamura Manabu T.
Abstract
Peroxisome proliferator-activated receptor α (PPARα), a key regulator of fatty acid oxidation, is essential for adaptation to fasting in rats and mice. However, physiological functions of PPARα in other species, including humans, are controversial. A group of PPARα ligands called peroxisome proliferators (PPs) causes peroxisome proliferation and hepatocarcinogenesis only in rats and mice. To elucidate the role of PPARα in adaptation to fasting in nonproliferating species, we compared gene expressions in pig liver from fasted and clofibric acid (a PP)-fed groups against a control diet-fed group. As in rats and mice, fasting induced genes involved with mitochondrial fatty acid oxidation and ketogenesis in pigs. Those genes were also induced by clofibric acid feeding, indicating that PPARα mediates the induction of these genes. In contrast to rats and mice, little or no induction of genes for peroxisomal or microsomal fatty acid oxidation was observed in clofibric acid-fed pigs. Histology showed no significant hyperplasia or hepatomegaly in the clofibric acid-fed pigs, whereas it showed a reduction of glycogen by clofibric acid, an effect of PPs also observed in rats. Copy number of PPARα mRNA was higher in pigs than in mice and rats, suggesting that peroxisomal proliferation and hyperresponse of several genes to PPs seen only in rats and mice are unrelated to the abundance of PPARα. In conclusion, PPARα is likely to play a central role in adaptation to fasting in pig liver as in rats and mice.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献