Pre-existing inflammatory state compromises heat tolerance in rats exposed to heat stress

Author:

Lim Chin Leong,Wilson Gary,Brown Lindsay,Coombes Jeff S.,Mackinnon Laurel T.

Abstract

This study investigated the roles of endotoxemia and heat-induced tissue damage in the pathology of heat stroke. In groups of eight, male Wistar rats were treated with heat exposure only (HE), or heat exposure with turpentine (T+HE), dexamethasone (D+HE), and turpentine and dexamethasone combined (TD+HE). The rats remained sedated for 2 h after receiving the respective treatments, followed by heat exposure until the core temperature (Tc) was 42°C for 15 min; control rats received turpentine (T), dexamethasone (D), and turpentine and dexamethasone (TD) without heat stress. Blood samples were collected before treatment ( baseline I), after 2 h of passive rest ( baseline II), at Tc 40°C (T40), and 15 min after achieving Tc 42°C (T42). No rats died in the nonheat-stressed groups. Survival rate was lowest in the TD+HE rats (37.5%), followed by the HE (62.5%), T+HE (75%), and D+HE (100%) rats ( P < 0.05). The duration of survival at T42°C was shortest in the TD+HE rats (9.9 ± 6.2 min) ( P < 0.01), followed by the T+HE (11.3 ± 6.1 min) and the HE (12.2 ± 4 min) ( P < 0.05) rats. The increase in plasma IL-6 concentrations was highest in the T+HE (352%) and HE (178%) rats ( P < 0.05). D+HE treatment suppressed the increases in plasma aspartate transaminase, alanine aminotransferase, and IL-6 and LPS concentrations during severe heat stress. Heat stroke can be triggered by endotoxemia or heat-induced tissue damage, and preexisting inflammation compromises heat tolerance, whereas blocking endotoxemia increases heat tolerance.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3