Regulation of amniotic fluid volume: insights derived from amniotic fluid volume function curves

Author:

Brace Robert A.12,Cheung Cecilia Y.12,Anderson Debra F.2

Affiliation:

1. Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon

2. Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon

Abstract

Recent advances in understanding the regulation of amniotic fluid volume (AFV) include that AFV is determined primarily by the rate of intramembranous absorption (IMA) of amniotic fluid across the amnion and into fetal blood. In turn, IMA rate is dependent on the concentrations of yet-to-be identified stimulator(s) and inhibitor(s) that are present in amniotic fluid. To put these concepts in perspective, this review 1) discusses the evolution of discoveries that form the current basis for understanding the regulation of AFV, 2) reviews the contribution of IMA to this regulation, and 3) interprets experimentally induced shifts in AFV function curves and amnioinfusion function curves in terms of the activity of the amniotic fluid stimulator and inhibitor of IMA. In the early 1980s, it was not known whether AFV was regulated. However, by the late 1980s, IMA was discovered to be a “missing link” in understanding the regulation of AFV. Over the next 25 years the concept of IMA evolved from being a passive process to being an active, unidirectional transport of amniotic fluid water and solutes by vesicles within the amnion. In the 2010s, it was demonstrated that a renally derived stimulator and a fetal membrane-derived inhibitor are present in amniotic fluid that regulate IMA rate and hence are the primary determinants of AFV. Furthermore, AFV function curves and amnioinfusion function curves provide new insights into the relative efficacy of the stimulator and inhibitor of IMA.

Funder

HHS | NIH | National Institute of Child Health and Human Development (NICHD)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3