Comparative insights into the mechanisms of renal organic anion and cation secretion

Author:

Pritchard J. B.1,Miller D. S.1

Affiliation:

1. Comparative Membrane Pharmacology Section, National Institute ofEnvironmental Health Sciences, Research Triangle Park, North Carolina27709.

Abstract

Comparative models have played a major role in defining the mechanisms that enable vertebrate proximal tubules to transport organic anions and cations from the peritubular interstitium to the urine. The unique advantages of these models and their contributions to our understanding of organic anion and cation transport mechanisms are summarized here. Recent studies of the organic anion transport system suggest that transport is coupled to metabolic energy via indirect coupling to the sodium gradient. Organic anions enter the cell across the basolateral membrane in exchange for alpha-ketoglutarate (alpha-KG), and the alpha-KG is returned to the interior via Na-alpha-KG cotransport. Indirect coupling to Na has been demonstrated in both isolated membranes and intact renal epithelial cells of species ranging from marine crustaceans to mammals. This mechanism was shown to drive not only cellular accumulation but also secretory transepithelial fluxes of organic anions. Luminal exit of secreted organic anions appears to be carrier mediated but is, at present, poorly understood, with mediated potential-driven efflux and anion exchange-driven efflux implicated in some species. As for organic anions, the renal clearance of some organic cations approaches the renal plasma flow. Although there is considerable variation in the handling of specific substrates between species, the basic properties of organic cation transport include carrier-mediated potential-driven uptake at the basolateral membrane, intracellular sequestration that reduces the free concentration of the cation, and luminal exit by organic cation-proton exchange. Reabsorptive transport is also observed for some organic cations, but its mechanisms and driving forces are not well understood.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3