Effect of photoperiod on the mechanical response of the pregnant rabbit uterus to oxytocin

Author:

Ninomiya-Alarcón J. G.,Hudson R.,Reyes-Guerrero G.,Barrera-Mera B.,Guevara-Guzmán R.

Abstract

We present findings suggesting that photoperiod is important in determining the sensitivity of the late-pregnant rabbit uterus to oxytocin (OT). Longitudinal myometrial strips were taken from term-pregnant and estrous rabbits and mounted in an organ bath for isometric myographic recording at different times during a 16:8-h light-dark cycle (lights on 0600–2200; n = 5/group), and the strength of contractions was registered in response to the application of OT or KCl. Strength of contractions was dose dependent and was up to 200 times greater at doses three to four orders of magnitude lower in tissue taken from pregnant animals during the light phase (0700 and 1300) than during the dark phase (2400 and 0400). Strips from nonpregnant estrous females also showed greater sensitivity and contractile force when taken in the light (0700) than in the dark (0400), although the differences were not significant. Consistent with the influence of photoperiod on uterine sensitivity to OT, strips taken from two groups of pregnant females ( n = 5/group) maintained on a light-dark cycle advanced 12 h showed significantly greater sensitivity and force in response to OT during the new subjective light than during the new subjective dark phase. The photoperiod-dependent contractile response to OT was specific and not simply the result of a change in general mechanical properties of the muscle, because administration of KCl resulted in dose-dependent contractions of similar magnitude in both the light and dark phase. These results are consistent with the fact that rabbits, like other nocturnal mammals, typically give birth during the day.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3