Sex- and bone-specific responses in bone structure to exogenous leptin and leptin receptor antagonism in the ovine fetus

Author:

De Blasio Miles J.1,Lanham Stuart A.2,Blache Dominique3,Oreffo Richard O. C.2,Fowden Abigail L.1,Forhead Alison J.14

Affiliation:

1. Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom

2. Bone and Joint Research Group, Centre for Human Development, Stem Cells, and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom

3. School of Animal Biology, University of Western Australia, Crawley, Australia

4. Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom

Abstract

Widespread expression of leptin and its receptor in developing cartilage and bone suggests that leptin may regulate bone growth and development in the fetus. Using microcomputed tomography, this study investigated the effects of exogenous leptin and leptin receptor antagonism on aspects of bone structure in the sheep fetus during late gestation. From 125 to 130 days of gestation (term ~145 days), chronically catheterized singleton sheep fetuses were infused intravenously for 5 days with either saline (0.9% saline, n = 13), recombinant ovine leptin at two doses (0.6 mg·kg−1·day−1 LEP1, n = 10 or 1.4 mg·kg−1·day−1 LEP2, n = 7), or recombinant superactive ovine leptin receptor antagonist (4.6 mg·kg−1·day−1 SOLA, n = 6). No significant differences in plasma insulin-like growth factor-I, osteocalcin, calcium, inorganic phosphate, or alkaline phosphatase were observed between treatment groups. Total femur midshaft diameter and metatarsal lumen diameter were narrower in male fetuses treated with exogenous leptin. In a fixed length of femur midshaft, total and bone volumes were reduced by the higher dose of leptin; nonbone space volume was lower in both groups of leptin-treated fetuses. Leptin infusion caused increments in femur porosity and connectivity density, and vertebral trabecular thickness. Leptin receptor antagonism decreased trabecular spacing and increased trabecular number, degree of anisotrophy, and connectivity density in the lumbar vertebrae. The increase in vertebral porosity observed following leptin receptor antagonism was greater in the malecompared with female, fetuses. Therefore, leptin may have a role in the growth and development of the fetal skeleton, dependent on the concentration of leptin, sex of the fetus, and bone type examined.

Funder

Biotechnology and Biological Sciences Research Council (BBSRC)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3