An in vivo and in vitro assessment of TOR signaling cascade in rainbow trout (Oncorhynchus mykiss)

Author:

Seiliez Iban,Gabillard Jean-Charles,Skiba-Cassy Sandrine,Garcia-Serrana Daniel,Gutiérrez Joaquim,Kaushik Sadasivam,Panserat Stephane,Tesseraud Sophie

Abstract

In mammals, feeding promotes protein accretion in skeletal muscle through a stimulation of the insulin- and amino acid- sensitive mammalian target of rapamycin (mTOR) signaling pathway, leading to the induction of mRNA translation. The purpose of the present study was to characterize both in vivo and in vitro the activation of several major kinases involved in the mTOR pathway in the muscle of the carnivorous rainbow trout. Our results showed that meal feeding enhanced the phosphorylation of the target of rapamycin (TOR), PKB, p70 S6 kinase, and eIF4E-binding protein-1, suggesting that the mechanisms involved in the regulation of mRNA translation are well conserved between lower and higher vertebrates. Our in vitro studies on primary culture of trout muscle cells indicate that insulin and amino acids regulate TOR signaling and thus may be involved in meal feeding effect in this species as in mammals. In conclusion, we report here for the first time in a fish species, the existence and the nutritional regulation of several major kinases involved in the TOR pathway, opening a new area of research on the molecular bases of amino acid utilization in teleosts.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3