Decreased myoblast differentiation in chronic binge alcohol-administered simian immunodeficiency virus-infected male macaques: role of decreased miR-206

Author:

Simon L.12,Ford S. M.1,Song K.1,Berner P.1,Vande Stouwe C.1,Nelson S.123,Bagby G. J.123,Molina P. E.12

Affiliation:

1. Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana;

2. Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana; and

3. School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana

Abstract

Skeletal muscle stem cells play a critical role in regeneration of myofibers. We previously demonstrated that chronic binge alcohol (CBA) markedly attenuates myoblast differentiation potential and myogenic gene expression. Muscle-specific microRNAs (miRs) are implicated in regulation of myogenic genes. The aim of this study was to determine whether myoblasts isolated from asymptomatic CBA-administered simian immunodeficiency virus (SIV)-infected macaques treated with antiretroviral therapy (ART) showed similar impairments and, if so, to elucidate potential underlying mechanisms. Myoblasts were isolated from muscle at 11 mo after SIV infection from CBA/SIV macaques and from time-matched sucrose (SUC)-treated SIV-infected (SUC/SIV) animals and age-matched controls. Myoblast differentiation and myogenic gene expression were significantly decreased in myoblasts from SUC/SIV and CBA/SIV animals compared with controls. SIV and CBA decreased muscle-specific miR-206 in plasma and muscle and SIV decreased miR-206 expression in myoblasts, with no statistically significant changes in other muscle-specific miRs. These findings were associated with a significant increase in histone deacetylase 4 (HDAC4) and decrease in myogenic enhancer factor 2C (MEF2C) expression in CBA/SIV muscle. Transfection with miR-206 inhibitor decreased myotube differentiation, increased expression of HDAC4, and decreased MEF2C, suggesting a critical role of miR-206 in myogenesis. Moreover, HDAC4 was confirmed to be a direct miR-206 target. These results support a mechanistic role for decreased miR-206 in suppression of myoblast differentiation resulting from chronic alcohol and SIV infection. The parallel changes in skeletal muscle and circulating levels of miR-206 warrant studies to establish the possible use of plasma miR-206 as an indicator of impaired muscle function.

Funder

HHS | NIH | National Institute on Alcohol Abuse and Alcoholism (NIAA)

HHS | NIH | National Center for Research Resources (NCRR)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3