Bowditch Lecture. Renal afferent inputs to ascending spinal pathways

Author:

Ammons W. S.1

Affiliation:

1. Department of Physiology, Thomas Jefferson University, Philadelphia,Pennsylvania 19107.

Abstract

Studies of renal afferent fibers and their functions have continued since the work of Pines in 1959 (Fiziol. Zh. SSSR Im. I M Sechenova 45: 1339-1347, 1959). The kidney contains mechanoreceptors and chemoreceptors that appear to have two major functions. First, renal mechano- and chemoreceptors evoke a variety of renorenal reflexes, while more global cardiovascular reflexes are primarily evoked by renal mechanoreceptors. A second function of renal afferent fibers is to cause the pain of renal disease. Recent studies suggest that renal afferent fibers may also regulate secretion of vasopressin from the pituitary gland. Substantial evidence indicates that, although most renal afferent fibers enter the spinal cord, their functions depend to a large extent on supraspinal circuitry. Thus our research has focused on defining characteristics of spinal neurons that relay renal information to the brain. In the cat, neurons in the L2-T11 segments with excitatory responses to renal A delta and C fiber input project to the medial medullary reticular formation and to the caudal and rostral ventrolateral medulla. Renal afferent information reaches these cells by way of the least splanchnic nerve and by way of more than one dorsal root. In the monkey spinothalamic neurons in the L3-T10 segments respond to renal nerve stimulation. Excitatory responses predominate, but inhibitory responses occur in L2 and L3. These cells also respond to renal A delta and C fibers. Stimulation of renal mechanoreceptors by occlusion of the ureteropelvic junction or renal vein excites feline spinoreticular neurons. Graded increases in renal vein pressure produce graded increases in cell responses. Activation of renal chemoreceptors increases activity of spinal interneurons. Within the L2-T11 segments, cells responding to ureteral occlusion are located caudally, cells with responses to renal artery occlusion are located rostrally, and cells responding to renal vein occlusion are located in between. The differential locations of cells with these inputs suggests the existence of a coding mechanism for different renal receptor populations. Distention of the renal pelvis is a potent stimulator of primate spinothalamic neurons. These neurons encode renal pelvic pressures in the noxious range and appear to be important in mechanisms of renal pain.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3