Modulation by pineal gland of ouabain high-affinity binding sites in rat cerebral cortex

Author:

Acuna Castroviejo D.1,Castillo J. L.1,Fernandez B.1,Gomar M. D.1,del Aguila C. M.1

Affiliation:

1. Departamento de Fisiologia, Facultad de Medicina, Universidad deGranada, Spain.

Abstract

To investigate the participation of the pineal gland and its hormone melatonin on Na(+)-K(+)-ATPase (the sodium pump) in rat brain, we used Scatchard plots to analyze the changes in rat cerebral cortex of [3H]ouabain high-affinity binding in groups of intact, pinealectomized (PX), and sham-PX rats. Only one type of binding site, with a dissociation constant of approximately 3 nM and site number (Bmax) of approximately 250 fmol/mg protein, was apparent with our assay conditions. PX or sham-PX rats (subjected to surgery 15 days earlier) were killed at six different time intervals during the 24-h cycle. Intact and sham-PX animals showed a similar biphasic pattern in diurnal rhythm of ouabain binding, with a minimal concentration of binding sites at 1600 h and a maximal concentration at 0400 h. Pinealectomy induced a significant increase in Bmax at all time intervals studied, with the largest rise appearing at night and coinciding with the nocturnal peak, whereas the daytime minimum was blunted. Time-dependent experiments indicated that the Bmax of ouabain high-affinity binding in PX rats attained maximal values at 7 days after surgery and decreased somewhat 7 days later, while sham-PX animals showed only a small transient increase in Bmax up to 7 days after surgery, with values returning to normal by the 15th day. Melatonin administration at a single subcutaneous dose of 25 micrograms/kg body wt given 3 h before death was enough to counteract the PX-induced increase of ouabain high-affinity binding. Melatonin was able to enhance the binding of [3H]ouabain to its receptor site, increasing binding affinity.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3