Affiliation:
1. Institute of Biological Sciences, University of Aarhus, Denmark.
Abstract
Isometric twitch tension of ventricular preparations stimulated at 0.2 Hz fell over 30 min of anoxia by a fraction decreasing in the order rainbow trout, cod, eel, and freshwater turtle. Drops in the estimated cytoplasmic energy state were related to larger tension losses for trout than for the other species, possibly due to larger changes in free phosphate. Anoxic energy degradation was slower for turtle than for the other species. Anoxia combined with glycolytic inhibition (1 mmol/l iodoacetate) enhanced the decrease in twitch tension for a drop in energy state and enlarged the increase in ADP/ATP relative to that in creatine/phosphocreatine to an extent inversely related to the creatine kinase activity. Furthermore, it increased resting tension to an extent possibly related to myosin-adenosinetriphosphatase (ATPase) activity and lowered the content of phosphorylated adenylates in trout and turtle myocardium. The results indicate that species differences in performance of the metabolically challenged myocardium depend on energy-degrading processes, e.g., myosin-ATPase activity, phosphate release, creatine kinase activity, and efflux/degradation of ADP and AMP, and that glycolysis offers protection due to its cytoplasmic localization.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献