Central effects of morphine and morphine-6-glucuronide on tissue protein synthesis

Author:

Hashiguchi Y.1,Molina P. E.1,Preedy V. R.1,Sugden P. H.1,McNurlan M. A.1,Garlick P. J.1,Abumrad N. N.1

Affiliation:

1. Department of Surgery, State University of New York at Stony Brook11794-8194, USA.

Abstract

The central and peripheral effects of morphine sulfate (Mor) and morphine-6-glucuronide (M6G) on the fractional rates of tissue protein synthesis (kappa s) were determined. We determined ks in conscious rats 2 h after intracerebroventricular injection of Mor (80 micrograms/rat), M6G (1 microgram/rat), or H2O (5 microliters). Intracerebroventricular Mor and M6G administration decreased ks in the liver by 19 and 18% spleen by 19 and 17%, and gastrocnemius by 18 and 17%, respectively. Intravenous injection of Mor (8 mg/kg) or M6G (0.4 mg/kg) did not affect ks in any of the tissues studied. Intracerebroventricular Mor and M6G resulted in an equivalent 10- to 15-fold increase in plasma epinephrine, 2- to 3-fold increase in norepinephrine, and 80-90% increase in corticosterone, with no change in insulin levels. Intracerebroventricular Mor produced a significant 30% decrease in arterial partial O2 pressure (PaO2) and no significant changes in arterial pH and arterial partial CO2 pressure (PacO2). Intracerebroventricular M6G decreased PaO2 (40%) and pH (from 7.44 +/- 0.01 to 7.34 +/- 0.02) and increased Paco2 (36%). The potential contribution of hypoxia to the opiate-induced decrease in ks was assessed in an additional set of rats exposed to 5% O2-95% N2. One or 2 h of hypoxia decreased protein synthesis in the brain by 47 and 56%, liver by 69 and 69%, and skeletal muscle by 51 and 52%, respectively. Our results indicate that Mor and M6G suppress tissue protein synthesis through central mechanisms, most likely mediated by opiate-induced respiratory depression in association with neural and hormonal alterations.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3