Water transport in collecting ducts of Japanese quail

Author:

Nishimura H.1,Koseki C.1,Patel T. B.1

Affiliation:

1. Department of Physiology and Biophysics, University of Tennessee at Memphis 38163, USA.

Abstract

Previously, we reported that the countercurrent urine concentration mechanism in birds appears to operate by recycling of a single solute (NaCl), in which the thick ascending limb of looped nephrons provides an energy source. To determine the importance of the medullary collecting duct (MCD) in the countercurrent multiplier system, we examined in isolated and perfused MCDs from Japanese quail, Coturnix coturnix, the osmotic and/or diffusional water permeability and whether arginine vasotocin (AVT) regulates water permeability. We noted that dark cells that possess electron-dense cytoplasm and numerous mitochondria and light mucus-secreting cells exist in the cortical collecting duct (CD), whereas only mucus-secreting cells are present in the MCDs. The volume flux (Jv) in the MCDs from intact birds and that from the water-deprived birds were nearly zero; after exposure to a hyperosmotic bath and AVT (2 x 10(-5) M), the Jv was significantly higher in water-deprived birds. The diffusional water permeability (Pdw) was moderately high in MCDs bathed in an isosmotic bath in which the Pdw was increased slightly by AVT (10(-5) M, bath) and more markedly (10(-5) M) by forskolin (Fsk), whereas 1,9-dideoxy Fsk (an inactive analogue) showed no effect. Furthermore, the basal adenosine 3',5'-cyclic monophosphate (cAMP) levels were higher in the medulla than in the cortex and were stimulated only slightly by AVT (10(-5) M) and markedly by Fsk (10(-4) M) in both the cortex and medulla. These results in the C. coturnix CD indicate the following. 1) Two types of cells are present; whereas dark cells resemble mammalian intercalated cells morphologically, it is not certain whether mucus-secreting cells are equivalent to principal cells. 2) AVT increases Pdw via a cAMP mechanism; the relatively high basal Pdw and minor effect of AVT on Jv and Pdw suggest, however, that diffusional water movement across the MCD may occur without significant direct control by AVT.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bird aquaporins: Molecular machinery for urine concentration;Biochimica et Biophysica Acta (BBA) - Biomembranes;2021-10

2. Diluting and Concentrating Mechanism;Comparative Physiology of the Vertebrate Kidney;2016

3. Osmoregulation and Excretion;Comprehensive Physiology;2014-03-19

4. Aquaporins in avian kidneys: function and perspectives;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2013-12-01

5. Integration of human mesenchymal stem cells into the Wolffian duct in chicken embryos;Biochemical and Biophysical Research Communications;2009-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3