Stimulation of Na(+)-K(+)-2Cl- cotransport in rat medullary thick ascending limb by dopamine

Author:

Aoki Y.1,Albrecht F. E.1,Bergman K. R.1,Jose P. A.1

Affiliation:

1. Second Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan.

Abstract

Dopamine receptors are present in the medullary thick ascending limb (mTAL) of Henle, but their effect on ion transport in this nephron segment has not been tested. Therefore, we studied the short-term effects of dopamine on Na(+)-K(+)-2Cl- cotransport (assessed by 100 microM bumetanide-sensitive 86Rb uptake) in rat mTAL tubular suspensions. Dopamine (1 microM) stimulated bumetanide-sensitive 86Rb uptake (72.1 +/- 10.6% vs. control, n = 5) by increasing total 86Rb uptake and by decreasing bumetanide-insensitive 86Rb uptake; this effect was concentration dependent. The dopamine-induced stimulation of Na(+)-K(+)-2Cl- cotransport activity was mimicked by calyculin A, a protein phosphatase (PP) inhibitor, and Sp isomer of adenosine 3',5'-cyclic monophosphothioate (Sp-cAMP[S]), a protein kinase A (PKA) agonist, and blocked by Rp isomer of 8-(4-chlorophenylthio)-cAMP[S] (Rp-8-CPT-cAMP[S]), a PKA inhibitor (n = 5). Dopamine did not increase the stimulatory effect of the PP inhibitor. However, the stimulatory effect of the PP inhibitor and PKA agonist was additive and approached the stimulatory effect of dopamine. The stimulatory effects of dopamine, PP inhibitor, and PKA agonist persisted even when intracellular sodium was clamped by 5 microM monensin. When K+ channels were blocked by 1 mM BaCl2, the effects of dopamine and calyculin A on the cotransport were no longer apparent, although the stimulatory effect of the PKA agonist was attenuated. We conclude that dopamine stimulates Na(+)-K(+)-2Cl- cotransport activity. This action is mediated mainly by PKA-dependent phosphorylation/dephosphorylation processes and modulated by dopamine actions on K+ channels.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3