Upregulation of endothelial and neuronal constitutive nitric oxide synthase in pregnant rats

Author:

Xu D. L.1,Martin P. Y.1,St John J.1,Tsai P.1,Summer S. N.1,Ohara M.1,Kim J. K.1,Schrier R. W.1

Affiliation:

1. Department of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA.

Abstract

Pregnancy is characterized by hemodynamic and body fluid alterations. Increased nitric oxide (NO) production has been suggested to play a role in the hemodynamic alterations of pregnancy and has also been reported to increase arginine vasopressin (AVP) release. We therefore hypothesized that gestation could increase both NO synthase (NOS) constitutive isoforms, neuronal NOS and endothelial NOS, and thereby contribute to the hyposmolality and peripheral arterial vasodilation of pregnancy, respectively. The present study was therefore undertaken to examine the constitutive NOS isoforms in aortas, mesenteric arteries, and hypothalami of pregnant rats on day 20 of gestation compared with age-matched nonpregnant rats. Plasma AVP was determined by radioimmunoassay and hypothalamic mRNA AVP by solution hybridization assay. Hypothalamic neuronal NOS was assessed by Northern blot and Western blot; endothelial NOS was assessed by Western blot in arteries and hypothalamus. The results demonstrated that 1) plasma AVP and hypothalamic AVP mRNA are increased in pregnant rats (n = 8), 2) neuronal NOS protein and mRNA are increased in hypothalamus of pregnant rats (n = 4), and 3) endothelial NOS expression, as assessed by Western blot analysis, is increased in both conductance (aorta) as well as resistance (mesenteric) arteries of pregnant rats (n = 4). We conclude that both of the constitutive NOS isoforms are increased in pregnant rats, suggesting that the peripheral arterial vasodilation and hyposmolality of pregnancy could be mediated by these isoforms.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3