Regulation of glucose turnover and hormonal responses during electrical cycling in tetraplegic humans

Author:

Kjaer M.1,Pollack S. F.1,Mohr T.1,Weiss H.1,Gleim G. W.1,Bach F. W.1,Nicolaisen T.1,Galbo H.1,Ragnarsson K. T.1

Affiliation:

1. Department of Rehabilitation Medicine, Mount Sinai Medical Center, New York, New York 10029, USA.

Abstract

To examine the importance of blood-borne vs. neural mechanisms for hormonal responses and substrate mobilization during exercise, six spinal cord-injured tetraplegic (C5-T1) males (mean age: 35 yr, range: 24-55 yr) were recruited to perform involuntary, electrically induced cycling [functional electrical stimulation (FES)] to fatigue for 24.6 +/- 2.3 min (mean and SE), and heart rate rose from 67 +/- 7 (rest) to 107 +/- 5 (exercise) beats/min. Voluntary arm cranking in tetraplegics (ARM) and voluntary leg cycling in six matched, long-term immobilized (2-12 mo) males (Vol) served as control experiments. In FES, peripheral glucose uptake increased [12.4 +/- 1.1 (rest) to 19.5 +/- 4.3 (exercise) mumol.min-1.kg-1; P < 0.05], whereas hepatic glucose production did not change from basal values [12.4 +/- 1.4 (rest) vs. 13.0 +/- 3.4 (exercise) mumol.min-1.kg-1]. Accordingly, plasma glucose decreased [from 5.4 +/- 0.3 (rest) to 4.7 +/- 0.3 (exercise) mmol/l; P < 0.05]. Plasma glucose did not change in response to ARM or Vol. Plasma free fatty acids and beta-hydroxybutyrate decreased only in FES experiments (P < 0.05). During FES, increases in growth hormone (GH) and epinephrine and decreases in insulin concentrations were abolished. Although subnormal throughout the exercise period, norepinephrine concentrations increased during FES, and responses of heart rate, adrenocorticotropic hormone, beta-endorphin, renin, lactate, and potassium were marked. In conclusion, during exercise, activity in motor centers and afferent muscle nerves is important for normal responses of GH, catecholamines, insulin, glucose production, and lipolysis. Humoral feedback and spinal or simple autonomic nervous reflex mechanisms are not sufficient. However, such mechanisms are involved in redundant control of heart rate and neuroendocrine activity in exercise.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3