Affiliation:
1. Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson 39216-4505, USA.
Abstract
This study was designed to quantitate the influence of the neurohumoral activation associated with orthostatic stress on renal hemodynamics and sodium excretion and, furthermore, to determine the importance of the renin-angiotensin system in mediating these changes in renal function. Seven conscious dogs were studied while lying in the recumbent position and, subsequently, after standing in a supporting sling. Experiments were conducted under control conditions and after plasma angiotensin II (ANG II) concentration was fixed at control levels by chronic infusion of captopril (14 micrograms.kg-1.min-1) and ANG II (0.5 +/- 0.02 ng.kg-1.min-1). During control experiments, 45 min of standing increased plasma renin activity twofold, whereas mean arterial pressure, heart rate, and plasma norepinephrine concentration remained unchanged. During standing, glomerular filtration rate (GFR) and renal plasma flow (RPF) fell to 88 +/- 2 and 77 +/- 3% of recumbent values, respectively, whereas filtration fraction (FF) increased 16 +/- 1%. Additionally, urinary (UNaV) and fractional sodium excretion (FENa) decreased to 27 +/- 6 and 30 +/- 7% of recumbent values, respectively. When plasma ANG II concentration was fixed at control levels during standing, there were no significant changes in GFR, whereas increments in FF and reductions in RPF, UNaV, and FENa were attenuated by 63, 40, 30, and 33%, respectively. These data suggest that, in conscious dogs, standing in a supporting sling causes reflex activation of the sympathetic nervous and renin-angiotensin systems, eliciting reductions in GFR, RPF, and UNaV. Furthermore, ANG II contributes significantly to the effects of passive standing on renal hemodynamics and UNaV.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献