Sex and hormonal cycle differences in rat brain levels of pain-related cannabimimetic lipid mediators

Author:

Bradshaw Heather B.,Rimmerman Neta,Krey Jocelyn F.,Walker J. Michael

Abstract

One important function of endocannabinoids and related lipid mediators in mammalian central nervous system is modulation of pain. Evidence obtained during the last decade shows that altered levels of these compounds in the brain accompany decreases in pain sensitivity. Such changes, if sexually dimorphic, could account for sex differences in pain and differences that occur during different phases of the hormonal cycle in females. To examine this possibility, we measured the levels of the pain-modulatory lipids anandamide, 2-arachidonoyl glycerol, N-arachidonoyl glycine, N-arachidonoyl gamma amino butyric acid, and N-arachidonoyl dopamine in seven different brain areas (pituitary, hypothalamus, thalamus, striatum, midbrain, hippocampus, and cerebellum) in male rats, and in female rats at five different points in the estrous cycle. The cerebellum did not demonstrate a change in endocannabinoid production across the estrous cycle, whereas all other areas tested showed significant differences in at least one of the compounds measured. These changes in levels occurred predominantly within the 36-h time period surrounding ovulation and behavioral estrus. Differences between males and females were measured as either estrous cycle-independent (all estrous cycles combined) or cycle-dependent (comparisons of males to each estrous cycle). In cycle-independent analyses, small sex differences were observed in the pituitary, hypothalamus, cerebellum, and striatum, whereas no differences were observed in the thalamus, midbrain, and hippocampus. In cycle-dependent analyses, the hypothalamus and pituitary showed largest sex differences followed by the striatum, midbrain, and hippocampus, whereas no sex differences were measured in thalamus and cerebellum. These data provide a basis for investigations into how differences in sex and hormonal status play a role in mechanisms regulating endocannabinoid production and pain.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3