Myofilament response to Ca2+ and Na+/H+ exchanger activity in sex hormone-related protection of cardiac myocytes from deactivation in hypercapnic acidosis

Author:

Bupha-Intr Tepmanas,Wattanapermpool Jonggonnee,Peña James R.,Wolska Beata M.,Solaro R. J.

Abstract

Compared to sham-operated controls, myofilaments from hearts of ovariectomized (OVX) rats demonstrate an increase in Ca2+ sensitivity with no change in maximum tension (Wattanapermpool J and Reiser PJ. Am J Physiol 277: H467–H473, 1999). To test the significance of this modification in intact cells, we compared intracellular Ca2+ transients and shortening of ventricular myocytes isolated from sham and 10-wk OVX rats. There was a decrease in the peak Ca2+ transient with prolonged 50% decay time in OVX cardiac myocytes without changes in the resting intracellular Ca2+ concentration. Percent cell shortening was also depressed, and relaxation was prolonged in cardiac myocytes from OVX rats compared with shams. Ovariectomy induced a sensitization of the myofilaments to Ca2+. Hypercapnic acidosis suppressed the shortening of OVX myocytes to a lesser extent than that detected in shams. Moreover, a larger compensatory increase in %cell shortening was obtained in OVX myocytes during prolonged acidosis. The elevated compensation in cell shortening was related to a higher amount of increase in the amplitude of the Ca2+ transient in OVX myocytes. However, these differences in Ca2+ transients and %cell shortening were no longer evident in the presence of 1 μM cariporide, a specific inhibitor of Na+/H+ exchanger type 1 (NHE1). Our results indicate that deprivation of female sex hormones modulates the intracellular Ca2+ concentration in cardiac myocytes, possibly via an increased NHE1 activity, which may act in concert with Ca2+ hypersensitivity of myofilament activation as a determinant of sex differences in cardiac function.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3