Author:
Hoch Nyssa E.,Guzik Tomasz J.,Chen Wei,Deans Tenecia,Maalouf Samer A.,Gratze Petra,Weyand Cornelia,Harrison David G.
Abstract
The adaptive immune response and, in particular, T cells have been shown to be important in the genesis of hypertension. In the present study, we sought to determine how the interplay between ANG II, NADPH oxidase, and reactive oxygen species modulates T cell activation and ultimately causes hypertension. We determined that T cells express angiotensinogen, the angiotensin I-converting enzyme, and renin and produce physiological levels of ANG II. AT1receptors were primarily expressed intracellularly, and endogenously produced ANG II increased T-cell activation, expression of tissue homing markers, and production of the cytokine TNF-α. Inhibition of T-cell ACE reduced TNF-α production, indicating endogenously produced ANG II has a regulatory role in this process. Studies with specific antagonists and T cells from AT1R and AT2R-deficient mice indicated that both receptor subtypes contribute to TNF-α production. We found that superoxide was a critical mediator of T-cell TNF-α production, as this was significantly inhibited by polyethylene glycol (PEG)-SOD, but not PEG-catalase. Thus, T cells contain an endogenous renin-angiotensin system that modulates T-cell function, NADPH oxidase activity, and production of superoxide that, in turn, modulates TNF-α production. These findings contribute to our understanding of how ANG II and T cells enhance inflammation in cardiovascular disease.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
242 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献