Characterization of tetraethylammonium uptake across the basolateral membrane of theDrosophilaMalpighian (renal) tubule

Author:

Rheault Mark R.,Debicki Donna M.,O'Donnell Michael J.

Abstract

Basolateral transport of the prototypical type I organic cation tetraethylammonium (TEA) by the Malpighian tubules of Drosophila melanogaster was studied using measurements of basolateral membrane potential (Vbl) and uptake of [14C]-labeled TEA. TEA uptake was metabolically dependent and saturable (maximal rate of mediated TEA uptake by all potential transport processes, reflecting the total transport capacity of the membrane, 0.87 pmol·tubule−1·min−1; concentration of TEA at 0.5 of the maximal rate of TEA uptake value, 24 μM). TEA uptake in Malpighian tubules was inhibited by a number of type I (e.g., cimetidine, quinine, and TEA) and type II (e.g., verapamil) organic cations and was dependent on Vbl. TEA uptake was reduced in response to conditions that depolarized Vbl(high-K+saline, Na+-free saline, NaCN) and increased in conditions that hyperpolarized Vbl(low-K+saline). Addition of TEA to the saline bathing Malpighian tubules rapidly depolarized the Vbl, indicating that TEA uptake was electrogenic. Blockade of K+channels with Ba2+did not block effects of TEA on Vblor TEA uptake indicating that TEA uptake does not occur through K+channels. This is the first study to provide physiological evidence for an electrogenic carrier-mediated basolateral organic cation transport mechanism in insect Malpighian tubules. Our results also suggest that the mechanism of basolateral TEA uptake by Malpighian tubules is distinct from that found in vertebrate renal tubules.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Reference40 articles.

1. Anomalous Rectification in the Squid Giant Axon Injected with Tetraethylammonium Chloride

2. Ashburner M.Drosophila: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1989.

3. Boom SAP, Gribnau FWJ, and Russel FGM.Organic cation transport and cationic drug interactions in freshly isolated proximal tubular cells of the rat.J Pharmacol Exp Ther263: 445–450, 1992.

4. Brändle Eand Greven J.Transport of Cimetidine across the basolateral membrane of rabbit kidney proximal tubules: characterization of transport mechanisms. J Pharmacol Exp Ther258: 1038–1045, 1991.

5. N1-methylnicotinamide transport by isolated perfused snake proximal renal tubules

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3