Is the Cushing mechanism a dynamic blood pressure-stabilizing system? Insights from Granger causality analysis of spontaneous blood pressure and cerebral blood flow

Author:

Saleem Saqib12,Teal Paul D.3,Howe Connor A.4,Tymko Michael M.4ORCID,Ainslie Philip N.4,Tzeng Yu-Chieh2

Affiliation:

1. Department of Electrical Engineering, COMSATS Institute of Information Technology, Sahiwal, Pakistan

2. Wellington Medical Technology Group, Centre for Translational Physiology, University of Otago, Wellington, New Zealand

3. School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand

4. Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada

Abstract

Blood pressure (BP) regulation is widely recognized as being integral to the control of end-organ perfusion, but it remains unclear whether end-organ perfusion also plays a role in driving changes in BP. A randomized and placebo-controlled study design was followed to examine feedback relationships between very-low-frequency fluctuations in BP and cerebral blood flow (CBF) in humans under placebo treatment and α1-adrenergic blockade. To determine the causal relations among hemodynamic variables, BP, middle cerebral artery blood velocity (MCAv), and end-tidal CO 2 time-series were decimated, low-pass filtered (<0.07 Hz), fitted to vector autoregressive models, and tested for Granger causality in the time domain. Results showed that 1) at baseline, changes in BP and MCAv often interact in a closed-loop; and 2) α1-adrenergic blockade results in the dominant causal direction from BP to MCAv. These results suggest that, between subjects, cerebral pressure-flow interactions at time scales < 0.07 Hz are frequently bidirectional, and that in the presence of an intact autonomic nervous system BP may be regulated by reflex pathways sensitive to changes in CBF.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3