Activation of brain lactate receptor GPR81 aggravates exercise-induced central fatigue

Author:

Li Junxia1,Xia Yiming2,Xu Honghao23,Xiong Renping2,Zhao Yan2,Li Ping2,Yang Tian4,Huang Qingyuan4,Shan Fabo2ORCID

Affiliation:

1. State Key Laboratory of Trauma, Burns and Combined Injury, Department of Traumatic Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China

2. State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China

3. Department of Medicine, Hubei Minzu University, Enshi, China

4. Department of Cold Environmental Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China

Abstract

Exercise-induced fatigue is a complex physiological phenomenon and is greatly influenced by central mechanisms in brain. As one of the most abundant circulating carbon metabolites, l-lactate in brain has been considered to be an important supplementary fuel during exercise; however, whether it plays a signaling role in fatigue remains largely obscure. In this study, our results initially revealed that brain l-lactate levels were increased after an exhaustive swimming session in several brain regions including motor cortex, hippocampus, and cerebellum. Then, we examined the specific role of brain lactate receptor, also known as hydroxycarboxylic acid receptor 1 (GPR81), in exercise-induced fatigue. We found that intracerebroventricular injection of either d-lactate (an enantiomer that could mediate activation of GPR81 as l-lactate) or a potent GPR81 agonist 3-chloro-5-hydroxybenzoic acid (CHBA), significantly decreased the swimming time to fatigue. After being subjected to the same weight-loaded swimming for 30 min, no obvious changes of blood lactate levels, gastrocnemius pAMPK/AMPK ratio, and glycogen contents were observed between intracerebroventricular CHBA-injected mice and vehicle-treated ones, which suggested a comparable degree of peripheral fatigue. Meanwhile, there were higher extracellular γ-aminobutyric acid (GABA) levels and lower extracellular glutamate levels and glutamate/GABA ratio in motor cortex of the intracerebroventricular CHBA-injected mice than that of vehicle-treated ones, indicating a greater extent of central fatigue in CHBA-injected mice than that in vehicle animals. Collectively, our results suggested that an increased level of brain l-lactate acts as a signaling molecule via activating GPR81, which in turn exacerbates central fatigue during exercise.

Funder

National Natural Science Foundation of China

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3