Renal NF-κB activation and TNF-α upregulation correlate with salt-sensitive hypertension in Dahl salt-sensitive rats

Author:

Gu Jian-Wei,Tian Niu,Shparago Megan,Tan Wei,Bailey Amelia P.,Manning R. Davis

Abstract

Molecular mechanisms of salt-sensitive (SS) hypertension related to renal inflammation have not been defined. We seek to determine whether a high-salt (HS) diet induces renal activation of NF-κB and upregulation of TNF-α related to the development of hypertension in Dahl SS rats. Six 8-wk-old male Dahl SS rats received a HS diet (4%), and six Dahl SS rats received a low-sodium diet (LS, 0.3%) for 5 wk. In the end, mean arterial pressure was determined in conscious rats by continuous monitoring through a catheter placed in the carotid artery. Mean arterial pressure was significantly higher in the HS than the LS group (177.9 ± 3.7 vs. 109.4 ± 2.9 mmHg, P < 0.001). There was a significant increase in urinary albumin secretion in the HS group compared with the LS group (22.3 ± 2.6 vs. 6.1 ± 0.7 mg/day; P < 0.001). Electrophoretic mobility shift assay demonstrated that the binding activity of NF-κB p65 proteins in the kidneys of Dahl SS rats was significantly increased by 53% in the HS group compared with the LS group ( P = 0.007). ELISA indicated that renal protein levels of TNF-α, but not IL-6, interferon-γ, and CCL28, were significantly higher in the HS than the LS group (2.3 ± 0.8 vs. 0.7 ± 0.2 pg/mg; P = 0.036). We demonstrated that plasma levels of TNF-α were significantly increased by fivefold in Dahl SS rats on a HS diet compared with a LS diet. Also, we found that increased physiologically relevant sodium concentration (10 mmol/l) directly stimulated NF-κB activation in cultured human renal proximal tubular epithelial cells. These findings support the hypothesis that activation of NF-κB and upregulation of TNF-α are the important renal mechanisms linking proinflammatory response to SS hypertension.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3