Neurotransmission and viscoelasticity in the ovine fetal bladder after in utero bladder outflow obstruction

Author:

Thiruchelvam N.1,Wu C.2,David A.3,Woolf A. S.1,Cuckow P. M.1,Fry C. H.2

Affiliation:

1. Nephro-Urology Unit, Institute of Child Health, London WC1N 1EH;

2. Division of Applied Physiology, Institute of Urology & Nephrology, London W1W 7EY; and

3. Department of Obstetrics and Gynaecology, University College London, London WC1E 6HX, United Kingdom

Abstract

Fetal bladder outflow obstruction, predominantly caused by posterior urethral valves, results in significant urinary tract pathology; these lesions are the commonest cause of end-stage renal failure in children, and up to 50% continue to suffer from persistent postnatal bladder dysfunction. To investigate the physiological development of the fetal bladder and the response to urinary flow impairment, we performed partial urethral obstruction and complete urachal ligation in the midgestation fetal sheep for 30 days. By electrical and pharmacological stimulation of bladder strips, we found that muscarinic, purinergic, and nitrergic mechanisms exist in the developing fetal bladder at this gestation. After bladder outflow obstruction, the fetal bladder became hypocontractile, producing less force after nerve-mediated and muscarinic stimulation with suggested denervation, and also exhibited greater atropine resistance. Furthermore, fetal bladder urothelium exerted a negative inotropic effect, partly nitric oxide mediated, that was not present after obstruction. Increased compliance, reduced elasticity, and viscoelasticity were observed in the obstructed fetal bladder, but the proportion of work performed by the elastic component (a physical parameter of extracellular matrix) remained the same. In addition to denervation, hypocontractility may result from a reduction in the elastic modulus that may prevent any extramuscular components from sustaining force produced by detrusor smooth muscle.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3