Effect of endoplasmic reticulum stress on endothelial ischemia-reperfusion injury in humans

Author:

Hemingway Holden W.1,Moore Amy M.1,Olivencia-Yurvati Albert H.12,Romero Steven A.1

Affiliation:

1. Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas

2. Department of Surgery, University of North Texas Health Science Center, Fort Worth, Texas

Abstract

Endoplasmic reticulum stress contributes to ischemia-reperfusion (I/R) injury in rodent and cell models. However, the contribution of endoplasmic reticulum stress in the pathogenesis of endothelial I/R injury in humans is unknown. We tested the hypothesis that compared with placebo, inhibition of endoplasmic reticulum stress via ingestion of tauroursodeoxycholic acid would prevent the attenuation of endothelium-dependent vasodilation following I/R injury. Twelve young adults (6 women) were studied following ingestion of a placebo or 1,500 mg tauroursodeoxycholic acid (TUDCA). Endothelium-dependent vasodilation was assessed via brachial artery flow-mediated dilation (duplex ultrasonography) before and after I/R injury, which was induced by 20 min of arm ischemia followed by 20 min of reperfusion. Endothelium-independent vasodilation (glyceryl trinitrate-mediated vasodilation) was also assessed after I/R injury. Compared with placebo, TUDCA ingestion increased circulating plasma concentrations by 145 ± 90 ng/ml and increased concentrations of the taurine unconjugated form, ursodeoxycholic acid, by 560 ± 156 ng/ml (both P < 0.01). Ischemia-reperfusion injury attenuated endothelium-dependent vasodilation, an effect that did not differ between placebo (pre-I/R, 5.0 ± 2.1% vs. post-I/R, 3.5 ± 2.2%) and TUDCA (pre-I/R, 5.6 ± 2.1% vs. post-I/R, 3.9 ± 2.1%; P = 0.8) conditions. Similarly, endothelium-independent vasodilation did not differ between conditions (placebo, 19.6 ± 4.8% vs. TUDCA, 19.7 ± 6.1%; P = 0.9). Taken together, endoplasmic reticulum stress does not appear to contribute to endothelial I/R injury in healthy young adults.

Funder

HHS | NIH | National Institute on Aging

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3