Sustained increases in skin blood flow are not a prerequisite to initiate sweating during passive heat exposure

Author:

Ravanelli Nicholas12,Jay Ollie12ORCID,Gagnon Daniel34ORCID

Affiliation:

1. Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada;

2. Thermal Ergonomics Laboratory, Faculty of Health Sciences, University of Sydney, Sydney, Australia;

3. Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Québec, Canada; and

4. Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada

Abstract

Some studies have observed a functional relationship between sweating and skin blood flow. However, the implications of this relationship during physiologically relevant conditions remain unclear. We manipulated sudomotor activity through changes in sweating efficiency to determine if parallel changes in vasomotor activity are observed. Eight young men completed two trials at 36°C and two trials at 42°C. During these trials, air temperature remained constant while ambient vapor pressure increased from 1.6 to 5.6 kPa over 2 h. Forced airflow across the skin was used to create conditions of high (HiSeff) or low (LoSeff) sweating efficiency. Local sweat rate (LSR), local skin blood flow (SkBF), as well as mean skin and esophageal temperatures were measured continuously. It took longer for LSR to increase during HiSeff at 36°C (HiSeff: 99 ± 11 vs. LoSeff: 77 ± 11 min, P < 0.01) and 42°C (HiSeff: 72 ± 16 vs. LoSeff: 51 ± 15 min, P < 0.01). In general, an increase in LSR preceded the increase in SkBF when expressed as ambient vapor pressure and time for all conditions ( P < 0.05). However, both responses were activated at a similar change in mean body temperature (average across all trials, LSR: 0.26 ± 0.15 vs. SkBF: 0.30 ± 0.18°C, P = 0.26). These results demonstrate that altering the point at which LSR is initiated during heat exposure is paralleled by similar shifts for the increase in SkBF. However, local sweat production occurs before an increase in SkBF, suggesting that SkBF is not necessarily a prerequisite for sweating.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3