Adenosine A2A-receptor blockade abolishes the roll-off respiratory response to hypoxia in awake lambs

Author:

Koos Brian J.,Kawasaki Yoshikazu,Kim Young-Han,Bohorquez Fanor

Abstract

Adenosine (ADO) receptor antagonists (aminophylline, caffeine) blunt the respiratory roll-off response to hypoxia in the newborn. This study was designed to determine the ADO receptor subtype involved in the respiratory depression. Chronically catheterized lambs of 7–16 days of age breathed via face mask a gas mixture with a fraction of inspired O2 of 0.21 (normoxia) or 0.07 (hypoxia), while being infused intravascularly with 9-cyclopentyl-1,3-dipropylxanthine (DPCPX; ADO A1-receptor antagonist, n = 8), ZM-241385 (ADO A2A-receptor antagonist, n = 7), or vehicle. Ventilation was measured at 20°C by a turbine transducer flowmeter. In normoxia [arterial Po2 (PaO2) of ∼83 Torr], infusion of vehicle did not alter cardiorespiratory measurements, whereas hypoxia (PaO2 of ∼31 Torr, 15 min) elicited biphasic effects on mean arterial pressure (transient increase), heart rate (HR; diminishing tachycardia), and minute ventilation. In the latter, hypoxia increased ventilation to a peak value of ∼2.5 times control within the first 3 min, which was followed by a significant ( P < 0.05) decline to ∼50% of the maximum increment over the subsequent 7 min. ZM-241385 abolished the hypoxic ventilatory roll-off and blunted the rate of rise in HR without affecting mean arterial pressure or rectal temperature responses. In normoxia, DPCPX increased ventilation and mean arterial pressure but did not change HR. Compared with vehicle, DPCPX did not significantly affect cardiorespiratory responses to hypoxemia (PaO2 of ∼31 Torr, 10 min). It is concluded that 1) ADO A2A receptors are critically involved in the ventilatory roll-off and HR responses to hypoxia, and 2) ADO A1 receptors, which are tonically active in cardiorespiratory control in normoxia, appear to have little impact on hypoxic ventilatory depression.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3