Hypothermia-enhanced splenic cytokine gene expression is independent of the sympathetic nervous system

Author:

Ganta Chanran K.,Helwig Bryan G.,Blecha Frank,Ganta Roman R.,Cober Richard,Parimi Sujatha,Musch Timothy I.,Fels Richard J.,Kenney Michael J.

Abstract

Splenic nerve denervation abrogates enhanced splenic cytokine gene expression responses to acute heating, demonstrating that hyperthermia-induced activation of splenic sympathetic nerve discharge (SND) increases splenic cytokine gene expression. Hypothermia alters SND responses; however, the role of the sympathetic nervous system in mediating splenic cytokine gene expression responses to hypothermia is not known. The purpose of the present study was to determine the effect of hypothermia on the relationship between the sympathetic nervous system and splenic cytokine gene expression in anesthetized F344 rats. Gene expression analysis was performed using a microarray containing 112 genes, representing inflammatory cytokines, chemokines, cytokine/chemokine receptors and housekeeping genes. A subset of differentially expressed genes was verified by real-time RT-PCR analysis. Splenic SND was decreased significantly during cooling (core temperature decreased from 38 to 30°C) in splenic-intact rats but remained unchanged in sham-cooled splenic-intact rats (core temperature maintained at 38°C). Hypothermia upregulated the transcripts of several genes, including, chemokine ligands CCL2, CXCL2, CXCL10, and CCL20, and interleukins IL-1α, IL-1β, and IL-6. Gene expression responses to hypothermia were similar for the majority of cytokine genes in splenic-intact and splenic-denervated rats. These results suggest that hypothermia-enhanced splenic cytokine gene expression is independent of splenic SND.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3