Learning-based recovery from perceptual impairment in salt discrimination after permanently altered peripheral gustatory input

Author:

Blonde Ginger12,Jiang Enshe12,Garcea Mircea1,Spector Alan C.12

Affiliation:

1. Department of Psychology and Center for Smell and Taste, University of Florida, Gainesville, Florida; and

2. Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida

Abstract

Rats lacking input to the chorda tympani (CT) nerve, a facial nerve branch innervating anterior tongue taste buds, show robust impairments in salt discrimination demonstrating its necessity. We tested the sufficiency of the CT for salt taste discrimination and whether the remaining input provided by the greater superficial petrosal (GSP) nerve, a facial nerve branch innervating palatal taste buds, or by the glossopharyngeal (GL) nerve, innervating posterior tongue taste buds, could support performance after extended postsurgical testing. Rats presurgically trained and tested in a two-response operant task to discriminate NaCl from KCl were subjected to sham surgery or transection of the CT (CTx), GL (GLx), or GSP (GSPx), alone or in combination. While initially reduced postsurgically, performance by rats with an intact GSP after CTx + GLx increased to normal over 6 wk of testing. Rats with CTx + GSPx consistently performed near chance levels. In contrast, rats with GSPx + GLx were behaviorally normal. A subset of rats subjected to sham surgery and exposed to lower concentrations during postsurgical testing emulating decreased stimulus intensity after neurotomy showed no significant impairment. These results demonstrate that CTx changes the perceptual nature of NaCl and/or KCl, leading to severe initial postsurgical impairments in discriminability, but a “new” discrimination can be relearned based on the input of the GSP. Despite losing ∼75% of their taste buds, rats are unaffected after GSPx + GLx, demonstrating that the CT is not only necessary, but also sufficient, for maintaining salt taste discrimination, notwithstanding the unlikely contribution of the small percentage of taste receptors innervated by the superior laryngeal nerve.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3