Early feeding of carnivorous rainbow trout (Oncorhynchus mykiss) with a hyperglucidic diet during a short period: effect on dietary glucose utilization in juveniles

Author:

Geurden I.,Aramendi M.,Zambonino-Infante J.,Panserat S.

Abstract

Based on the concept of nutritional programming in higher vertebrates, we tested whether an acute hyperglucidic stimulus during early life could induce a long-lasting effect on carbohydrate utilization in carnivorous rainbow trout. The trout were fed a hyperglucidic diet (60% dextrin) at two early stages of development: either at first feeding (3 days, stimulus 1) or after yolk absorption (5 days, stimulus 2). Before and after the hyperglucidic stimulus, they received a commercial diet until juvenile stage (>10 g). Fish that did not experience the hyperglucidic stimuli served as controls. The short- and long-term effects of the stimuli were evaluated by measuring the expression of five key genes involved in carbohydrate utilization: α-amylase, maltase (digestion), sodium-dependent glucose cotransporter (SGLT1; intestinal glucose transport), and glucokinase and glucose-6-phosphatase, involved in the utilization and production of glucose, respectively. The hyperglucidic diet rapidly increased expressions of maltase, α-amylase, and glucokinase in stimulus 1 fish and only of maltase in stimulus 2 fish, probably because of a lower plasticity at this later stage of development. In the final challenge test with juveniles fed a 25% dextrin diet, both digestive enzymes were upregulated in fish that had experienced the hyperglucidic stimulus at first feeding, confirming the possibility of modification of some long-term physiological functions in rainbow trout. In contrast, no persistent molecular adaptations were found for the genes involved in glucose transport or metabolism. In addition, growth and postprandial glycemia were unaffected by the stimuli. In summary, our data show that a short hyperglucidic stimulus during early trout life may permanently influence carbohydrate digestion.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3