Affiliation:
1. Group de Recherche sur le Système Nerveux Autonome, Faculté de Pharmacie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
Abstract
The aim of the present study was to investigate whether the dihydropyridine-sensitive L-type Ca2+ channel is operative in adrenal catecholamine (CA) secretion induced by a novel neuropeptide, pituitary adenylate cyclase-activating polypeptide (PACAP), in anesthetized dogs. Plasma CA concentrations in adrenal venous and aortic blood were determined by a high-performance liquid chromatography method. All drugs tested were locally infused into the left adrenal gland via the left adrenolumbar artery. PACAP, with the isoform consisting of 27 (PACAP-27) and 38 (PACAP-38) amino acid residues, significantly increased CA output in a dose-dependent manner, with doses ranging from 5 to 500 ng and 7 to 700 ng, respectively. However, the amplitude of epinephrine response to PACAP-27 was three times greater than that obtained with PACAP-38 at the highest dose tested. In a separate group, a single dose of PACAP-27 (50 ng) induced highly reproducible CA responses when the same dose was repeated with an interval of 35 min. In dogs treated with nifedipine (50 μg), 5 min before the second administration of PACAP-27, the net CA response was significantly inhibited by ∼50% compared with that obtained in the presence of vehicle. A similar CA response to BAY K 8644 (5 μg) was completely abolished by the same dose of nifedipine. The present results indicate that both PACAP-27 and PACAP-38 have the direct local secretagogue effect on the adrenal medulla in vivo and that CA responses to PACAP-27 were greater than those observed with PACAP-38 at equivalent mole doses. The study suggests that the dihydropyridine-sensitive L-type Ca2+ channel is functionally involved in PACAP-induced adrenal CA secretion in the canine adrenal medulla in vivo.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献