Thermal relations of metabolic rate reduction in a hibernating marsupial

Author:

Song Xiaowei1,Körtner Gerhard1,Geiser Fritz1

Affiliation:

1. Zoology, University of New England, Armidale, New South Wales 2351, Australia

Abstract

We tested whether the reduction of metabolic rate (MR) in hibernating Cercartetus nanus (Marsupialia, 36 g) is better explained by the reduction of body temperature (Tb), the differential (ΔT) between Tb and air temperature (Ta), or thermal conductance (C). Above the critical Ta during torpor (Ttc) of 4.8 ± 0.7°C, where the Tb was not regulated, the steady-state MR was an exponential function of Tb( r 2 = 0.92), and the overall Q10 was 3.3. However, larger Q10 values were observed at high Tb values during torpor, particularly within the thermoneutral zone (Q10 = 9.5), whereas low Q10 values were observed below Tb 20°C (Q10 = 1.9). The ΔT did not change over Ta 5–20°C, although MR fell, and therefore the two variables were not correlated. Below the Ttc, Tb was regulated at 6.1 ± 1.0°C and MR increased proportionally to ΔT. Our study suggests that MR in torpid C. nanus is largely determined by temperature effects and metabolic inhibition. In contrast, ΔT explains MR only below the Ttc and C appears to affect MR only indirectly via changes of Tb, suggesting that ΔT and C play only a secondary role in MR reduction during hibernation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3