Characteristics of renal Na(+)-D-glucose cotransport in the skate (Raja erinacea) and shark (Squalus acanthias)

Author:

Kipp H.1,Kinne-Saffran E.1,Bevan C.1,Kinne R. K.1

Affiliation:

1. Max-Planck-Institut fur Molekulare Physiologie, AbteilungEpithelphysiologie, Dortmund, Germany.

Abstract

We have investigated the properties of the skate (Raja erinacea) and shark (Squalus acanthias) kidney Na(+)-D-glucose cotransporters (SGLT) in uptake studies of radiolabeled substrates into isolated renal brush-border membrane vesicles (BBMV). Scatchard plot analysis of the substrate dependence revealed that the Na(+)-D-glucose cotransporter population is homogenous within each species. Skate BBMV showed a relatively high affinity for D-glucose [Michaelis constant (K(m)) = 0.12 mM] with an apparent coupling ratio of approximately 2 Na+ to 1 D-glucose, whereas the shark transporter was much lower in affinity (K(m) = 1.90 mM) and had a lower coupling ratio, more like 1 Na+ to 1 D-glucose. These characteristics resemble the properties of SGLT1 and SGLT2, which are known to coexist in the mammalian kidney. Inhibitor studies using sugar analogs and glucosides suggested structural differences of the D-glucose binding site among these transporters, whereas the hydrophobic transporter domains in the vicinity of the D-glucose binding site appeared to be similar. In the high-affinity skate system, D-glucose was recognized by hydrogen bonds to the hydroxy groups at C-2, C-3, and C-4 and by hydrophobic interaction with the C-6 methylene group. In contrast, the low-affinity shark system seemed to lack the hydrophobic recognition motif for the C-6 methylene group of D-glucose.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3