Heterogeneous actions of vasopressin on ANG II-sensitive neurons in the subfornical organ of rats

Author:

Anthes Norman1,Schmid Herbert A.1,Hashimoto Masaaki1,Riediger Thomas1,Simon Eckhart1

Affiliation:

1. Max-Planck-Institut für Physiologische und Klinische Forschung, W. G. Kerckhoff-Institut, 61231 Bad Nauheim, Germany; and Department of Physiology, Yamanashi Medical University, Tamaho, Yamanashi 409-38, Japan

Abstract

The aim of this study was to investigate the effects of the antidiuretic hormone arginine vasopressin (AVP), which is released in vivo during dehydration and hypovolemia to prevent further water loss, on the activity of neurons in the subfornical organ (SFO). The SFO is a brain structure with an open blood-brain barrier and is critically involved in angiotensin II (ANG II)-dependent water intake. SFO neurons were recorded extracellularly in tissue slices of the rat brain and were tested for responsiveness to AVP and ANG II. About one-half of 159 neurons tested with an AVP concentration of 10−6 M in the superfusion medium were responsive, and approximately equal proportions were excited and inhibited. Neurons exhibiting the different response types did not differ from each other with respect to spontaneous discharge rate, latency, and duration of the response. Excitatory and inhibitory responses to AVP were dose dependent and reversible, and their threshold concentrations (10−8 to 10−9 M) were similar. Superfusion with a medium low in Ca2+ and high in Mg2+ showed that the excitatory effect is most likely direct, whereas the inhibitory effect largely depends on inhibitory synaptic interaction. About one-half of the SFO neurons excited by ANG II (10−7 M) were responsive to AVP (10−6 M), and equal proportions were inhibited and excited. Both excitatory and inhibitory AVP actions were blocked by the V1-receptor antagonist, Manning compound, and neurons responsive to AVP did not respond to the V2-receptor agonist [deamino-Cys1,d-Arg8]vasopressin. It is concluded that AVP, probably released from synaptic terminals, may increase or decrease the activity of neurons in the SFO, many of which are activated by ANG II. In contrast to previous experiments on ducks, in which the exclusively excitatory effect of the avian antidiuretic hormone arginine vasotocin on ANG II-sensitive SFO neurons correlates well with the dipsogenic effect of both peptides, a greater functional heterogeneity exists among AVP-responsive neurons in the rat SFO.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3