A finite element model for predicting the distribution of drugs delivered intracranially to the brain

Author:

Kalyanasundaram S.1,Calhoun V. D.1,Leong K. W.1

Affiliation:

1. Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205

Abstract

Drug therapy to the central nervous system is complicated by the presence of the blood-brain barrier. The development of new drug delivery techniques to overcome this obstacle will be aided by a clear understanding of the transport processes in the brain. A rigorous theoretical framework of the transport of drugs delivered locally to the parenchyma has been developed using the finite element method. Magnetic resonance imaging has been used to track the transport of paramagnetic contrast markers in the brain. The information obtained by postprocessing spin-echo, T1-weighted, and proton density images has been used to refine the mathematical model that includes realistic brain geometry and salient anatomic features and allows for two-dimensional transport of chemical species, including both diffusive and convective contributions. In addition, the effects of regional differences in tissue properties, ventricular boundary, and edema on the transport have been considered. The model has been used to predict transport of interleukin-2 in the brain and study the major determinants of transport, at both early and late times after drug delivery.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3